Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 394: 110993, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38604394

ABSTRACT

Aldehyde dehydrogenase 7A1 (ALDH7A1) catalyzes a step of lysine catabolism. Certain missense mutations in the ALDH7A1 gene cause pyridoxine dependent epilepsy (PDE), a rare autosomal neurometabolic disorder with recessive inheritance that affects almost 1:65,000 live births and is classically characterized by recurrent seizures from the neonatal period. We report a biochemical, structural, and computational study of two novel ALDH7A1 missense mutations that were identified in a child with rare recurrent seizures from the third month of life. The mutations affect two residues in the oligomer interfaces of ALDH7A1, Arg134 and Arg441 (Arg162 and Arg469 in the HGVS nomenclature). The corresponding enzyme variants R134S and R441C (p.Arg162Ser and p.Arg469Cys in the HGVS nomenclature) were expressed in Escherichia coli and purified. R134S and R441C have 10,000- and 50-fold lower catalytic efficiency than wild-type ALDH7A1, respectively. Sedimentation velocity analytical ultracentrifugation shows that R134S is defective in tetramerization, remaining locked in a dimeric state even in the presence of the tetramer-inducing coenzyme NAD+. Because the tetramer is the active form of ALDH7A1, the defect in oligomerization explains the very low catalytic activity of R134S. In contrast, R441C exhibits wild-type oligomerization behavior, and the 2.0 Å resolution crystal structure of R441C complexed with NAD+ revealed no obvious structural perturbations when compared to the wild-type enzyme structure. Molecular dynamics simulations suggest that the mutation of Arg441 to Cys may increase intersubunit ion pairs and alter the dynamics of the active site gate. Our biochemical, structural, and computational data on two novel clinical variants of ALDH7A1 add to the complexity of the molecular determinants underlying pyridoxine dependent epilepsy.


Subject(s)
Aldehyde Dehydrogenase , Mutation, Missense , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/metabolism , Humans , Molecular Dynamics Simulation , Crystallography, X-Ray , Models, Molecular , Epilepsy/genetics , Infant , Male
2.
Int J Mol Sci ; 23(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36233167

ABSTRACT

Pyridone adenine dinucleotides (ox-NADs) are redox inactive derivatives of the enzyme cofactor and substrate nicotinamide adenine dinucleotide (NAD) that have a carbonyl group at the C2, C4, or C6 positions of the nicotinamide ring. These aberrant cofactor analogs accumulate in cells under stress and are potential inhibitors of enzymes that use NAD(H). We studied the conformational landscape of ox-NADs in solution using molecular dynamics simulations. Compared to NAD+ and NADH, 2-ox-NAD and 4-ox-NAD have an enhanced propensity for adopting the anti conformation of the pyridone ribose group, whereas 6-ox-NAD exhibits greater syn potential. Consequently, 2-ox-NAD and 4-ox-NAD have increased preference for folding into compact conformations, whereas 6-ox-NAD is more extended. ox-NADs have distinctive preferences for the orientation of the pyridone amide group, which are driven by intramolecular hydrogen bonding and steric interactions. These conformational preferences are compared to those of protein-bound NAD(H). Our results may help in identifying enzymes targeted by ox-NADs.


Subject(s)
Molecular Dynamics Simulation , NAD , Adenine , Amides , Dapsone/analogs & derivatives , NAD/metabolism , Niacinamide , Pyridones , Ribose
SELECTION OF CITATIONS
SEARCH DETAIL
...